
- 1. SANS justifier, on a $\arccos\left(\cos(\frac{2024\pi}{3})\right)=\dots$
- **2.** Soit $x \in [-1, 1]$. Montrer que $\cos(\operatorname{Arcsin} x) = \sqrt{1 x^2}$.

3. Énoncer et illustrer (avec tous les éléments importants du dessin) l'inégalité de concavité du logarithme

.....

4. Définition. La fonction Arctangente est						
5.	5. On a le tableau :					
	x					
	variations de Arctan					
6.	6. La fonction Arctangente est dérivable sur et on a					
7.	7. Donner les tableaux de variations des fonctions Arccosinus (à gauche) et Arcsinus (à droite)					
	x			x		
	variations de Arccos			variations de Arcsin		
8.	3. Les fonctions Arccosinus et Arcsinus sont dérivables sur et on a					
9.	9. Les fonctions cosinus hyperbolique et sinus hyperbolique sont définies sur par					
10.	0. Les fonctions cosinus hyperbolique et sinus hyperbolique sont dérivables sur et on a					
11.	11. On a les tableaux de variations :					
	x			x		
	variations de ch			variations de sh		